FCh cheatsheet

A handy guide containing the most important formulae of physical chemistry (thermodynamics)
that a chemical engineer will need in practical life. The derivation steps are important to give
you a sense of purpose, but for brevity they are only outlined in very brief points.

Definitions are marked with =

Statements valid only for ideal gas (resp. ideal mixture) are marked *

Czech names are in violet

By Jiri Zbytovsky in 2023
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Equations of state
(EOS, stavové rovnice)

For liquids, there is usually only thermal expansion coeff (koef izobarické roztaznosti) «,
and isothermal compressibility (stlacitelnost) x:
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For gases, generally pV' = 2nRT, where z is the compressibility factor; for * z = 1.
Common non-ideal EOS are: virial 1st order (4]), van der Waals , Redlich-Kwong @:
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By the way, the Boyle temp can be calculated from critical: Tg = 3.3 T,
A real gas is closest to ideal at Tz, meaning z = 1
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https://jira.zby.cz/index.php?page=about

Core Thermodynamics

Volume work (basic physics):
dW = —pdV

First TD law defines internal energy U (vnitini energie):

AU = dQ + dW

Isobaric process [p] leads us to define enthalpy H (but H is valid under any conditions):

dU =dQ — pdV
dQ =dU + pdV =d(U + pV) = dH
H=U+pV
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Heat capacity: at isochoric conditions we may substitute from [§] at isobaric from [I0]

Heat capacity is usually used in intensive form C,, = C'/n.
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Mayer’s * formula can be proven: 77 — 9% = =57 57 = o7 = nR
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Second TD law (equal for a reversible process, greater for irreversible)
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TD1 + TD2 (just substitute eqs , into |8]) gets us the total differentials of U, H:

AU = TdS — pdV
dH = TdS + Vdp

Gibbs energy

When we consider other W than volume W (total reversible work dW,., =

then eq [16] becomes:
dU =TdS — pdv + dWother = erev + dWTev
And at [T] it leads us to define the Helmholtz free energy F:

d(U =T8) = dW,.,
F=U-TS

At [T] dF = dW,., while at [T, V] dF = dWer
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At [T7:
dF = _pdv + dWother
And at [p] it leads us to define the Gibbs free energy G:

d(F +pv) = dWother
G=F+pV=H-TS

By combining eqs 16|, resp. we get the total differentials of F, G:

dF = —SdT — pdV
dG = —SdT + Vdp

Entropy differential

By applying the Schwarz’s theorem, we can quantify various state function derivations:
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Combining TD2 with C,, or Cy (eqs [15] + [12] [13)), we get:
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Combining 26} resp. we get two forms of S total differential:
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Adiabatic compression work

(26)
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When all these are fulfilled: adiabatic, *, Cy = const, only volume work and no other work,

then we apply TD1, d@Q = 0, Cy and Mayer (eqgs (8] 14]):

AU = dw
nCydT = —pdV
QAT = —£qv
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Definite integral from V;, T} to V5,15, let kK = Com 1.
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Alternatively, we may use indefinite integral on eq[34] to get:

TV = const pV" = const (36)

Reversible work: a common problem is to integrate dW = —pdV from py, Vi to po, V5.
Using eq [36] we can express p = py (%)H, and let K = p, V" = p Vi
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Gibbs phase rule

Let there be f phases (for example 1,2, 3...) and k components (A, B, C...)
The variables needed to fully describe the system are T, p, and molar fracs x:

T1A4 T1B T1C
ToA T2B  ToC (38)
r3A T3 T3C

The number of molar fracs = f(k — 1); the k — 1 is because Y./ z; = 1 for each phase.
That means total variables = f(k — 1) + 2
Note: T, p is common for system, not per phase; thermal & mechanical equilibrium is assumed.

These equations are left to describe the phase equilibrium:

pi = pt = puf (39)
= py = ps (40)
= py = ps (41)

That’s k(f — 1) equations (see eq |52 for p definition).
When we add ¢ arbitrary bounds (equations), the degrees of freedom (stupné volnosti) are:

v o= fk=D)4+2—k(f-1)—c = k—f+2—c (42)

Clapeyron equation

Describes the relation p(T') of a single-component phase transition from phase 1 — 2.
Equilibrium is when dG} = dG?,, and we substitute G differential from eq

dp SmQ - Sml o ASm A]—Im

AT~ V,,—V.. AV.  TAV,

The last equality comes from applying TD2 and TD1 with H (eqs 10)),
because a single-component phase transition is at [T, p]

(44)
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When phase 2 is * gas, then V5 > V,,1, and so AV}, = V5 = %
p then means vapor pressure p° (tlak sytych par). This is the Clausius-Clapeyron equation:
dlnp® AH,

AT~ RT?

(45)

We could assume AH,,, = const and use indefinite integral to get p°(T'), but it’s very inaccurate,
instead the empirical Antoine equation is used universally:

B
Inp®=A— 46
np T+C (46)
Definite integral, however, may be used as a good estimate for small intervals:
5 —AH, 1 1
e (---) (47)
P1 R T, Th

Mixing

For ideal mixtures Dalton p = > p;, Amagat V = >V,

also AH™X = (0, but AS™X £ (), therefore AG™* = () either. Why is that?

Imagine two ideal gases A, B, both at p, each in a compartment of V4, Vg and let V = V4 + V3.

Connecting the compartments means A expands V4,p — V,pa, where p, is partial pressure
of A in whole V. Analogically B expands Vg,p — V,pp, and the process happens at [T].

Using eqs either or (let’s go with the latter), we get:

mix A aS e 85 p p
AS™* = AS, + ASp = — ) dp+ — dp:—nARlnf—nBRln?B (48)
P ap T p 8p T

AS™* = —y,Rlnzy —2pRInxg ...:—szilnxi (49)

Let GmZ be G,, for pure component i, then:

AG™ = AH™ — TAS™™ = RTY " z;Inx; (50)

7

G = 121Gt + T9Ga .. + AG™™ = Z :EZG"” + RTZ zilnz; (51)

Now let’s d/dn; and add excess GE which quantifies the non-ideal mixture deviation,
and let’s define chemical potential y; of component ¢ in a mixture, and p; for pure std ¢:

Hi = Gm,i = g—g (52)
(8G) = Gpi+ RTIng; + G (53)

8ni Tp
i = p; + RT'na, (54)

We have thus defined activity a; as such number, that it includes the non-ideality from G*®.
By the way, G, is called the partial G, for 7 in a mixture.

Non-ideal mixing behavior can be expressed either with partial, or excess quantities.
Following applies for any partial quantity: V™ = 3" 2,V (especially useful for V).

Note that there can be an ideal mixture of non-ideally behaving components, as well as a

non-ideal mixture of ideally behaving components...
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Reaction thermodynamics

ArH°® at std temp T°, where ApH? is the std formation enthalpy of compound i:

ARH® = " v;ApHy (55)

Kirchhoft’s law to get ArH at a given temp T

T

ApH = AgH® + / AC,dT (56)

o

AC’p = Z I/Z‘Cpi (57)

Note: AC), = B(C,?TH) as per eq
Chemical equilibrium: we extend G differential (eq with dependence on components n;:

oG
Gni

0G = —SdT + Vdp+ Y ~—dn, (58)

We assume thermal & mechanical equilibrium, so [T, p], and use p; definition from eq .

0
Also, we use reaction extent (reakéni rozsah) € = “—" so dn; = y;d¢:

Vi

oG B
(a—é_)TJD = Z vil; = ARG (59)

Using a; from eq [b4] leads us to define ARG°® = > v;us,
and let’s define the reaction quotient Q =[], a;":

ARG = Z Vi + Z v; RT In a; (60)

ARG = ARG° + RTIn [ [ af* = ARG° + RTInQ (61)

Note that () can be calculated anytime, not just in equilibrium, and can therefore have any
value. In equilibrium AgrG = 0, and only then K = @), the equilibrium constant:

ARG® = —RTIn K (62)

Usually we approx. a; = & or a; = ]% (when std state = pure component),
and we express ¢;(€), pi(€), so that K = K (&) — eq[62] can be solved for &

Temp. dependence: as per eq 23] ArRG® = AgH — TARS,

o
therefore % = A%H — ARS.

At first glance, we could naively think that d/d7T is very easily done in one step:

088 AgH
or T2

(63)

This equation is indeed true, but doing the derivation is actually way more difficult...
Though the naive approach serves as a great mnemotechnic!



Vapor-liquid equilibrium

Raoult+Dalton’s law relates partial pressure p;, molar. fracs in vapor phase y;, in liquid x;,
and pure ¢ vapor pressure (see Antoine eq[46]). In this form valid only for * vapor phase (often
reasonable assumption), but considers non-ideal liquid mixing, then a; = v;z;.

Pi = Yip = VT (64)

~; is the activity coeff, for * liquid mixture v = 1, otherwise quantified as function ¥ = (T, %),
for example using the NRT'L model.

Boiling point is defined as such temperature, that these add up to system pressure p.
Summing up eq [64] draws the isothermal boiling point curve, a function p = p(Z):

p= Z Vi (65)

Dew point (rosny bod) curve is the same eq rewritten as function p = p(%).
Here shown for binary, but the same can be done for any number of components:

p=x1mp] + (1 — z1)72p5

_up o nip o
b= V1P + <1 - o> V2P
Y1P1 Y1P1

Move all terms with p to left-hand side, then substitute y» = 1 — y; and divide by (pyep3):

Y25 o
p(l—y1+y1 2 2) = Y2DP>
7P

17
(&O N y_> 1
V2DP2 Y1P1 p
.1
AN (66)
p YiD; p

Eq [66]in reciprocal form draws the isothermal dew point curve.
The two isothermal curves (forming pry diagram) have very limited practical application...

The isobaric boiling + dew point functions (T'zy diagram) as 7' = T'(¥), T = T(y)
are much more useful, but unfortunately cannot be expressed analytically.
Set p as constant, substitute Antoine into p; to get these as implicit functions.

Another often used form of VLE is the isobaric zy diagram as a function y§ = 3(%).
It combines boiling & dew curves into one, while information on boiling 7" is separate. It is
again implicit for T, this time a set of two eqs: 1) |65 with p as const, 2) substitute |65] into .

Note: isobaric form of VLE is implicit because T" cannot be isolated from Antoine eq.
And when liquid mixture is non-ideal, 7" is also in the v model.


https://en.wikipedia.org/wiki/Non-random_two-liquid_model
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