
FCh cheatsheet

A handy guide containing the most important formulae of physical chemistry (thermodynamics)
that a chemical engineer will need in practical life. The derivation steps are important to give
you a sense of purpose, but for brevity they are only outlined in very brief points.
Definitions are marked with ≡
Statements valid only for ideal gas (resp. ideal mixture) are marked *
Czech names are in violet
By Jǐŕı Zbytovský in 2023
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Equations of state

(EOS, stavové rovnice)

For liquids, there is usually only thermal expansion coeff (koef izobarické roztažnosti) α,
and isothermal compressibility (stlačitelnost) κ:

α ≡ 1
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)
p

(1)

κ ≡ − 1
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(
∂Vm

∂p

)
T

(2)

α

−κ
=

(
∂p
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)
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(3)

For gases, generally pV = znRT , where z is the compressibility factor; for * z = 1.
Common non-ideal EOS are: virial 1st order (4), van der Waals (5), Redlich-Kwong (6):

p =
RT

Vm

(
1 +

Bp
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)
(4)

p =
RT
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− a

V 2
m
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p =
RT
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− a√

TVm(Vm − b)
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By the way, the Boyle temp can be calculated from critical: TB
.
= 3.3 Tc

A real gas is closest to ideal at TB, meaning z
.
= 1
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Core Thermodynamics

Volume work (basic physics):
dW = −pdV (7)

First TD law defines internal energy U (vnitřńı energie):

dU = dQ+ dW (8)

Isobaric process [p] leads us to define enthalpy H (but H is valid under any conditions):

dU = dQ− pdV (9)

dQ = dU + pdV = d(U + pV ) = dH (10)

H ≡ U + pV (11)

Heat capacity: at isochoric conditions we may substitute from 8, at isobaric from 10.
Heat capacity is usually used in intensive form Cm ≡ C/n.

CV ≡
(
∂Q

∂T

)
V

=

(
∂U

∂T

)
V

(12)

Cp ≡
(
∂Q

∂T

)
p

=

(
∂H

∂T

)
p

(13)

Mayer’s * formula can be proven: ∂H
∂T

− ∂U
∂T

= ∂(U+pV )
∂T

− ∂U
∂T

= ∂(pV )
∂T

= nR

∗ Cpm − CV m = R (14)

Second TD law (equal for a reversible process, greater for irreversible)

dS ≥ dQ

T
(15)

TD1 + TD2 (just substitute eqs 15, 11 into 8) gets us the total differentials of U,H:

dU = TdS − pdV (16)

dH = TdS + V dp (17)

Gibbs energy
When we consider other W than volume W (total reversible work dWrev = −pdV + dWother),
then eq 16 becomes:

dU = TdS − pdV + dWother = dQrev + dWrev (18)

And at [T ] it leads us to define the Helmholtz free energy F :

d(U − TS) = dWrev (19)

F ≡ U − TS (20)

At [T ] dF = dWrev while at [T, V ] dF = dWother
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At [T ]:

dF = −pdV + dWother (21)

And at [p] it leads us to define the Gibbs free energy G:

d(F + pV ) = dWother (22)

G ≡ F + pV = H − TS (23)

By combining eqs 20+16, resp. 23+17, we get the total differentials of F,G:

dF = −SdT − pdV (24)

dG = −SdT + V dp (25)

Entropy differential
By applying the Schwarz’s theorem, we can quantify various state function derivations:

∂2F

∂T∂V
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)
V

(26)
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T

= −
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p

(27)

Combining TD2 with Cp or CV (eqs 15 + 12, 13), we get:(
∂S

∂T

)
V

=
CV

T
(28)(

∂S

∂T

)
p

=
Cp

T
(29)

Combining 28+26, resp. 29+27, we get two forms of S total differential:

dS =
CV

T
dT +

(
∂p

∂T

)
V

dV (30)

dS =
Cp

T
dT −

(
∂V

∂T

)
p

dp (31)

Adiabatic compression work

When all these are fulfilled: adiabatic, *, CV = const, only volume work and no other work,
then we apply TD1, dQ = 0, CV and Mayer (eqs 8+12+14):

dU = dW (32)

nCV dT = −pdV (33)
CV

T
dT = −R

V
dV (34)
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Definite integral from V1, T1 to V2, T2, let κ ≡ Cpm

CV m
− 1:

ln T2

T1
=

(
Cpm

CV m
− 1

)
ln V2

V1
= κ ln V2

V1
(35)

Alternatively, we may use indefinite integral on eq 34, to get:

TV (κ−1) = const pV κ = const (36)

Reversible work: a common problem is to integrate dW = −pdV from p1, V1 to p2, V2.
Using eq 36 we can express p = p1

(
V1

V

)κ
, and let K ≡ p1V

κ
1 = p2V

κ
2 :
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∫ V2
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p1V
κ
1
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V κ
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1
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V 1−κ
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K
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)
W ≥ 1

1−κ
(p2V2 − p1V1) (37)

Gibbs phase rule

Let there be f phases (for example 1, 2, 3...) and k components (A,B,C...)
The variables needed to fully describe the system are T, p, and molar fracs x:

x1A x1B x1C

x2A x2B x2C

x3A x3B x3C

(38)

The number of molar fracs = f(k − 1); the k − 1 is because
∑f

i xi = 1 for each phase.
That means total variables = f(k − 1) + 2
Note: T, p is common for system, not per phase; thermal & mechanical equilibrium is assumed.

These equations are left to describe the phase equilibrium:

µA
1 = µB

1 = µC
1 (39)

µA
2 = µB

2 = µC
2 (40)

µA
3 = µB

3 = µC
3 (41)

That’s k(f − 1) equations (see eq 52 for µ definition).
When we add c arbitrary bounds (equations), the degrees of freedom (stupně volnosti) are:

v = f(k − 1) + 2− k(f − 1)− c = k − f + 2− c (42)

Clapeyron equation

Describes the relation p(T ) of a single-component phase transition from phase 1 → 2.
Equilibrium is when dG1

m = dG2
m, and we substitute G differential from eq 25:

−Sm1dT + Vm1dp = −Sm2dT + Vm2dp (43)

dp

dT
=

Sm2 − Sm1

Vm2 − Vm1

=
∆Sm

∆Vm

=
∆Hm

T∆Vm

(44)

The last equality comes from applying TD2 and TD1 with H (eqs 15+10),
because a single-component phase transition is at [T, p]
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When phase 2 is * gas, then Vm2 ≫ Vm1, and so ∆Vm
.
= Vm2

.
= RT

p

p then means vapor pressure p◦ (tlak sytých par). This is the Clausius-Clapeyron equation:

d ln p◦

dT
=

∆Hm

RT 2
(45)

We could assume ∆Hm = const and use indefinite integral to get p◦(T ), but it’s very inaccurate,
instead the empirical Antoine equation is used universally:

ln p◦ = A− B

T + C
(46)

Definite integral, however, may be used as a good estimate for small intervals:

ln
p◦2
p◦1

=
−∆Hm

R

(
1

T2

− 1

T1

)
(47)

Mixing

For ideal mixtures Dalton p =
∑

pi, Amagat V =
∑

Vi,
also ∆Hmix = 0, but ∆Smix ̸= 0, therefore ∆Gmix ̸= 0 either. Why is that?
Imagine two ideal gases A,B, both at p, each in a compartment of VA, VB and let V ≡ VA+VB.
Connecting the compartments means A expands VA, p → V, pA, where pA is partial pressure
of A in whole V . Analogically B expands VB, p → V, pB, and the process happens at [T ].
Using eqs either 30+26 or 31+27 (let’s go with the latter), we get:

∆Smix = ∆SA +∆SB =

∫ pA

p

(
∂S

∂p

)
T

dp+

∫ pB

p

(
∂S

∂p

)
T

dp = −nAR ln pA
p
− nBR ln pB

p
(48)

∆Smix
m = −xAR lnxA − xBR lnxB ... = −R

∑
i

xi lnxi (49)

Let Ġm,i be Gm for pure component i, then:

∆Gmix = ∆Hmix − T∆Smix = RT
∑
i

xi lnxi (50)

Gmix
m = x1Ġm1 + x2Ġm2 ...+∆Gmix =

∑
i

xiĠm,i +RT
∑
i

xi lnxi (51)

Now let’s d/dni and add excess GE which quantifies the non-ideal mixture deviation,
and let’s define chemical potential µi of component i in a mixture, and µ◦

i for pure std i:

µi ≡ Ḡm,i ≡ ∂G
∂ni

(52)(
∂G

∂ni

)
T,p

= Ġm,i +RT lnxi +GE (53)

µi = µ◦
i +RT ln ai (54)

We have thus defined activity ai as such number, that it includes the non-ideality from GE.
By the way, Ḡm,i is called the partial Gm for i in a mixture.
Non-ideal mixing behavior can be expressed either with partial, or excess quantities.
Following applies for any partial quantity: V mix

m =
∑

i xiV̄i (especially useful for V ).

Note that there can be an ideal mixture of non-ideally behaving components, as well as a
non-ideal mixture of ideally behaving components...
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Reaction thermodynamics

∆RH
◦ at std temp T ◦, where ∆FH

◦
i is the std formation enthalpy of compound i:

∆RH
◦ =

∑
i

νi∆FH
◦
i (55)

Kirchhoff’s law to get ∆RH at a given temp T :

∆RH = ∆RH
◦ +

∫ T

T ◦
∆CpdT (56)

∆Cp =
∑
i

νiCpi (57)

Note: ∆Cp =
∂(∆H)
∂T

as per eq 13

Chemical equilibrium: we extend G differential (eq 25) with dependence on components ni:

∂G = −SdT + V dp+
∑
i

∂G

∂ni

dni (58)

We assume thermal & mechanical equilibrium, so [T, p], and use µi definition from eq 52.

Also, we use reaction extent (reakčńı rozsah) ξ ≡ ni−n0
i

νi
, so dni = νidξ:(

∂G

∂ξ

)
T,P

=
∑

νiµi ≡ ∆RG (59)

Using ai from eq 54 leads us to define ∆RG
◦ ≡

∑
νiµ

◦
i ,

and let’s define the reaction quotient Q ≡
∏

i a
νi
i :

∆RG =
∑

νiµ
◦
i +

∑
i

νiRT ln ai (60)

∆RG = ∆RG
◦ +RT ln

∏
i

aνii = ∆RG
◦ +RT lnQ (61)

Note that Q can be calculated anytime, not just in equilibrium, and can therefore have any
value. In equilibrium ∆RG = 0, and only then K ≡ Q, the equilibrium constant:

∆RG
◦ = −RT lnK (62)

Usually we approx. ai
.
= ci

c◦
or ai

.
= pi

p◦
(when std state = pure component),

and we express ci(ξ), pi(ξ), so that K = K(ξeq) → eq 62 can be solved for ξeq

Temp. dependence: as per eq 23, ∆RG
◦ = ∆RH − T∆RS,

therefore ∆RG◦

T
= ∆RH

T
−∆RS.

At first glance, we could naively think that d/dT is very easily done in one step:

∂∆RG◦

T

∂T
=

−∆RH

T 2
(63)

This equation is indeed true, but doing the derivation is actually way more difficult...
Though the naive approach serves as a great mnemotechnic!
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Vapor-liquid equilibrium

Raoult+Dalton’s law relates partial pressure pi, molar. fracs in vapor phase yi, in liquid xi,
and pure i vapor pressure (see Antoine eq 46). In this form valid only for * vapor phase (often
reasonable assumption), but considers non-ideal liquid mixing, then ai = γixi.

pi = yip = γixip
◦
i (64)

γi is the activity coeff, for * liquid mixture γ = 1, otherwise quantified as function γ⃗ = γ⃗(T, x⃗),
for example using the NRTL model.

Boiling point is defined as such temperature, that these add up to system pressure p.
Summing up eq 64 draws the isothermal boiling point curve, a function p = p(x⃗):

p =
∑
i

γixip
◦
i (65)

Dew point (rosný bod) curve is the same eq rewritten as function p = p(y⃗).
Here shown for binary, but the same can be done for any number of components:

p = x1γ1p
◦
1 + (1− x1)γ2p

◦
2

p =
y1p

γ1p◦1
γ1p

◦
1 +

(
1− y1p

γ1p◦1

)
γ2p

◦
2

Move all terms with p to left-hand side, then substitute y2 = 1− y1 and divide by (pγ2p
◦
2):

p

(
1− y1 + y1

γ2p
◦
2

γ1p◦1

)
= γ2p

◦
2(

y2
γ2p◦2

+
y1
γ1p◦1

)
=

1

p∑
i

yi
γip◦i

=
1

p
(66)

Eq 66 in reciprocal form draws the isothermal dew point curve.

The two isothermal curves (forming pxy diagram) have very limited practical application...

The isobaric boiling + dew point functions (Txy diagram) as T = T (x⃗), T = T (y⃗)
are much more useful, but unfortunately cannot be expressed analytically.
Set p as constant, substitute Antoine into p◦i to get these as implicit functions.

Another often used form of VLE is the isobaric xy diagram as a function y⃗ = y⃗(x⃗).
It combines boiling & dew curves into one, while information on boiling T is separate. It is
again implicit for T , this time a set of two eqs: 1) 65 with p as const, 2) substitute 65 into 66.

Note: isobaric form of VLE is implicit because T cannot be isolated from Antoine eq.
And when liquid mixture is non-ideal, T is also in the γ model.

7

https://en.wikipedia.org/wiki/Non-random_two-liquid_model

	Equations of state
	Core Thermodynamics
	Adiabatic compression work
	Gibbs phase rule
	Clapeyron equation
	Mixing
	Reaction thermodynamics
	Vapor-liquid equilibrium

